Refrigeration Oils for Natural Refrigerants

FUCHS Schmierstoffe GmbH, Christian Puhl

eurammon symposium, Klostergut Paradies, June 28, 2019

eurammon

refrigerants delivered by mother nature

Refrigeration Oils for Natural Refrigerants Content

- General requirements
- Key characteristics miscibility and viscosity
- RENISO refrigeration oils for Natural refrigerants (NH₃) Hydrocarbons (e.g. propane, propylene) Carbon Dioxide (CO₂)
- Summary / outlook

Requirements for refrigeration oils

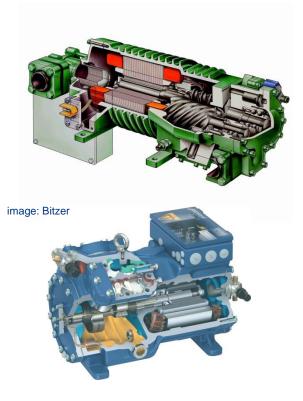
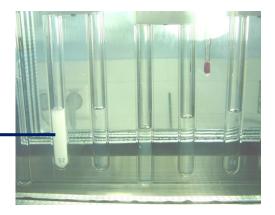


image: GEA Bock


- Reliable lubrication properties (viscosity, antiwear performance)
- Good miscibility with refrigerants (oil transport, heat transfer)
- High chemical and thermal stability (in combination with refrigerant)
- Good compatibility with components (metals, plastics, elastomers)
- Reliable isolation properties (in hermetic compressors)
- Low water content

Oil-refrigerant mixtures: "poor miscibility" What does that mean ?

Poor miscibility = phase separation into oil phase + refrigerant phase

> Refrigeration oil with refrigerant_ → milky turbid emulsion

Refrigeration oil (with poor miscibility)

Refrigerant → completely separated

Poor miscibility:

- → Negative impact on oil transport:
- → Negative impact on heat transfer:

Oil gets collected in the system \rightarrow compressor is running dry Insulating/blocking oil film \rightarrow decrease in performance

Viscosity temperature diagram: Viscosity index (VI)

Kinematic viscosity in mm²/s

1000

100

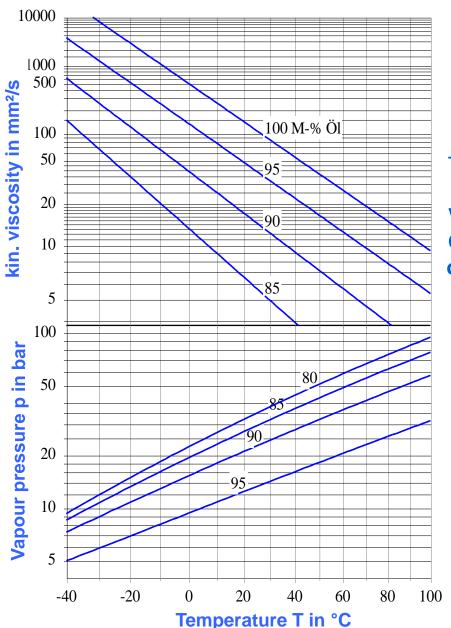
68

10

0

Viscosity temperature diagram or viscosity index (VI) describes: 100% oil (without refrigerant) viscosity decreases \checkmark with increasing temp. Synthetic oil (PAO): VI = 130 \checkmark depending on the base oil type (naphthenic): VI = 40Ideal: viscosity should ... - not increase at lower temp. - not decrease at higher temp. \rightarrow flat line / high VI (> 100) 80 100 120 Temperature in °C

40 °C reference temperature


40

20

Mineral oil

60

PVT diagram (Pressure-Viscosity-Temperature)

LUBRICANTS. TECHNOLOGY. PEOPLE.

The PVT diagram shows

Viscosity (V) of the mixture = Oil with dissolved refrigerant under operating conditions (p, T)

- Viscosity decreases with increasing content of refrigerant.
- The higher the pressure and the lower the temperature, the higher the refrigerant content.

Example diagram: RENISO C 55 E/CO₂ (concentration data in mass-% oil in CO₂)

RENISO refrigeration oils for Ammonia (NH₃, R717)

Refrigeration oils for ammonia (NH₃) Refrigeration oils based on mineral oils

"Classic" refrigeration oils for ammonia: Naphthenic mineral oils

- ... good low temperature properties: Based on naphthenic mineral oil
- ... world-wide available: Long-term availability is secured

RENISO KM 32 RENISO KS 46 RENISO KC 68 RENISO KES 100 RENISO KW 150

- ... compatibility and miscibility with all other NH₃ oils (except PAGs): In every proportion
- ... very good compatibility with elastomers:
 No problems with HNBR, NBR, CR elastomers
 → Proven seal compatibility with commonly used elastomers

Refrigeration oils for ammonia (NH₃) Refrigeration oils based on PAOs...

...like:

RENISO UltraCool 68 RENISO Synth 68

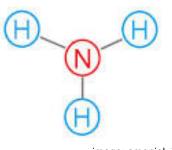


image: amoniak.info

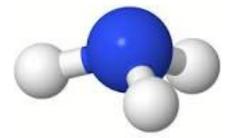
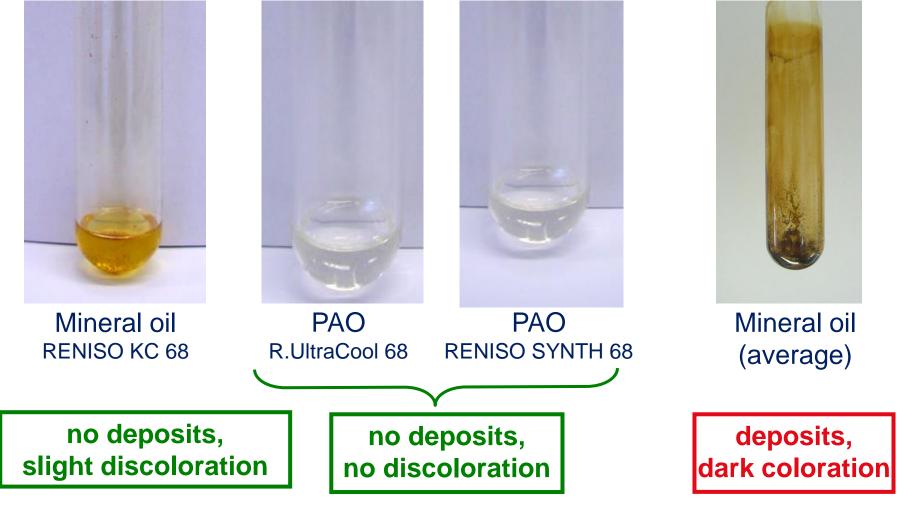


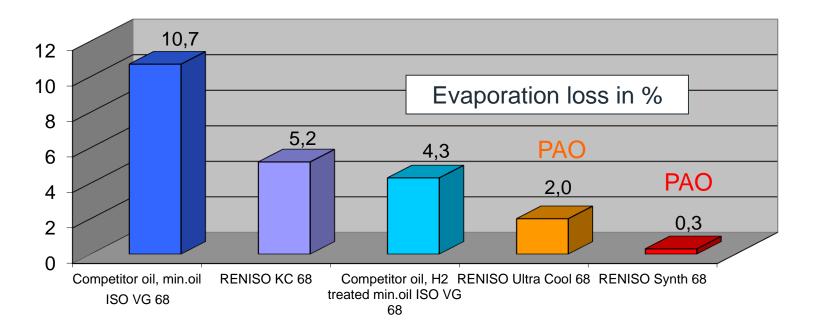
image: chemgapedia.deo


- Low temperature flowability \rightarrow for lower evaporation temperatures
- Evaporation loss \rightarrow for less oil consumption
- Thermal stability → for less deposits in compressors / filters
- Lifetime → for longer oil change intervals

... surpass mineral oils with regard to:

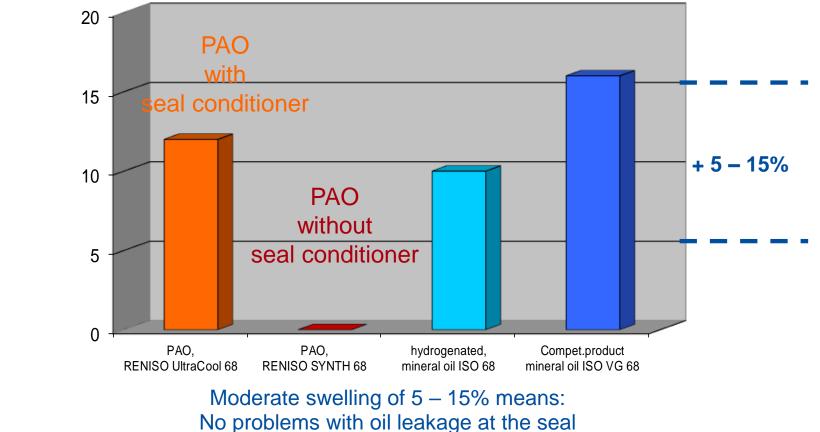
Refrigeration oils for ammonia (NH₃)

*oil ageing procedure acc. DIN 51538: 120 °C / 7d / NH_3 + air / steel coupons


Appearance of oil + tubes after test:

Refrigeration oils for ammonia (NH₃) Evaporation loss (\rightarrow oil carry over)

Evaporation loss acc. to ASTM D 972 150 °C / 22 h / air flow rate 2 l/min


Synthetic PAO refrigeration oils have lower evaporation losses than refrigeration oils based on mineral oil → less oil refilling quantities in the compressor

Refrigeration oils for ammonia (NH₃) Sealing compatibility

Change of volume / %

Sealing material: Chloroprene (CR). Storage in oil: 7 days at 100 °C

 \rightarrow PAO without seal conditioner may perhaps cause problems with CR

→ Suitable are mineral oils and PAO with seal conditioner: RENISO UltraCool 68 and UltraCool 100

Refrigeration oils for ammonia (NH₃) based on synthetic PAO

ISO VG	Basis naphthenic mineral oil RENISO K				Basis synthetic oil PAO RENISO UltraCool			
		Kin. visc. at 40 °C [mm²/s]	Kin. visc. at 100 °C [mm²/s]	VI		Kin. visc. at 40 °C [mm²/s]	Kin. visc. at 100 °C [mm²/s]	VI
68	RENISO KC 68	68	7.4	58	RENISO UltraCool 68	62	9.1	124
100	RENISO KES 100	100	8.4	20	RENISO UltraCool 100	108	14.4	136
150	RENISO KW 150	150	10.9	27			$\widehat{\mathbf{A}}$	
220	RENISO KX 220	220	13.6	25				

Synthetic PAO refrigeration oils provide high lubricating film thickness: also at high temperatures reliable lubrication ("High VI effect") → Suitable especially for heat pumps

Refrigeration oils for ammonia (NH₃) Miscibility at higher temperatures (!)

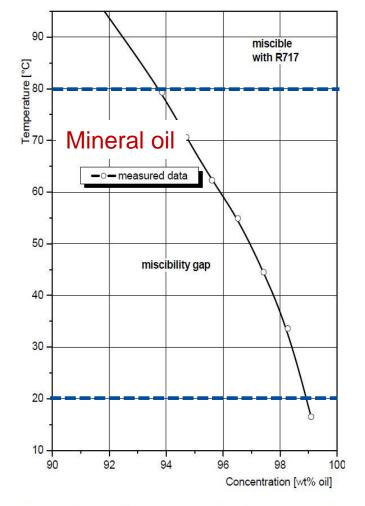


Fig. 4 Miscibility behavior in the system Reniso KC 68 – R717

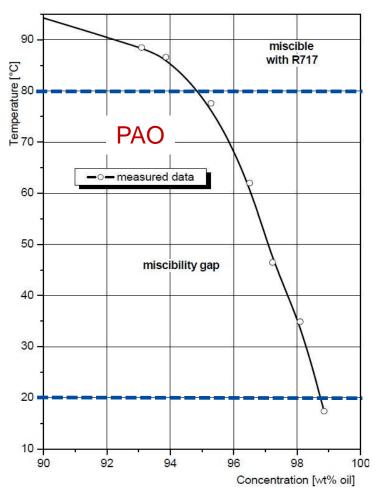


Fig. 2 Miscibility behavior in the system Reniso Synth 68 – R717

at 80 °C: up to 6.5% NH₃ are miscible with refrigeration oil

Refrigeration oils for ammonia (NH₃) Maximum NH₃ concentration

	Fig. 4 Miscibility behavior in the system Reniso $KC 68 - R717$	Fig. 2 Miscibility behavior in the system Reniso Synth 68 – R717	
Temperature	Maximum NH ₃ concentration in the oil/NH ₃ mixture		
	Mineral oil RENISO KC 68	PAO RENISO SYNTH 68	
< 0 °C	< 1%	< 1%	
40 °C	2.2%	2.2%	
60 °C	4.1%	3.4%	
80 °C	6.4%	5.4%	

Also in "non-miscible" NH₃ oils there can be a homogeneous mixture with ammonia at elevated temperatures.
 → Synthetic oils: less NH₃ is solved → less impact on viscosity

Refrigeration oils for ammonia (NH₃) Miscibility and viscosity

How big is the influence of miscibility on the viscosity?

Please see here:

Forschungsrat Kältetechnik Project

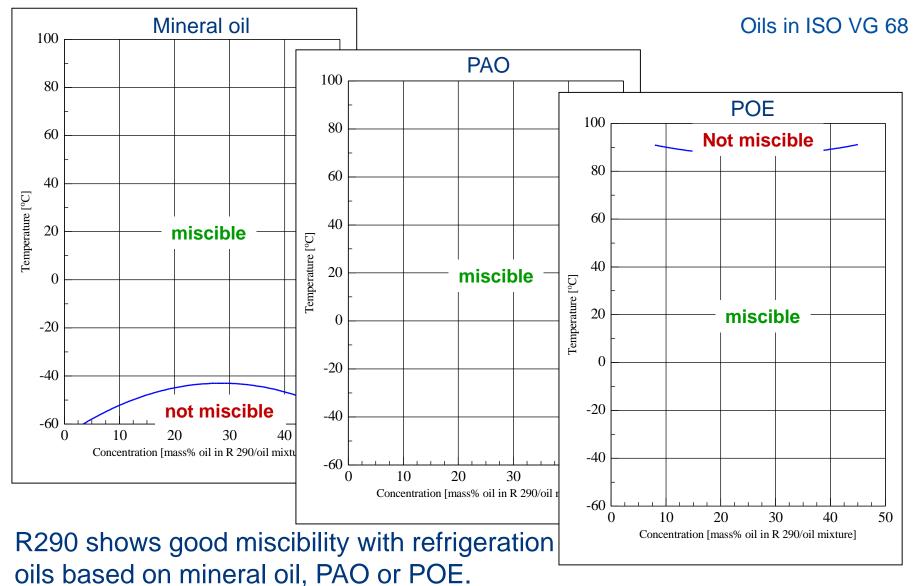
FKT 208/17 Effect of the ammonia solubility on the viscosity of different refrigeration oil types

Examined oils:

- Mineral oil based
- PAO based (both in ISO VG 68)

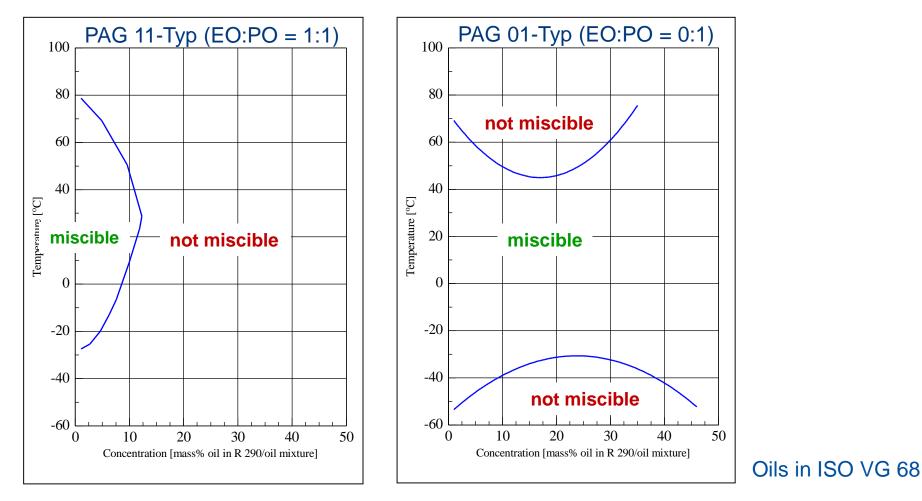
Result:

→ Mixture viscosity of PAO oils is in general higher compared to mineral oils



RENISO refrigeration oils for Hydrocarbons (Propane, Propylene, Isobutane etc.)

Refrigeration oils for hydrocarbons Miscibility with R290



18 FUCHS Schmierstoffe GmbH - Product Management Industrial Oils, C. Puhl - June 2019

Refrigeration oils for hydrocarbons Miscibility with R290

PAG: Miscibility depends on the chemical basic structure: Relation ethylene oxide / propylene oxide in the molecule

Refrigeration oils for hydrocarbons: R290 solubility and viscosity

		Without R290 40 °C	Wi R29 5 bar /		
RENISO	Base oil	kV [mm²/s]	Conc. [m% R290]	kV [mm²/s]	kV = kinematic viscosity
KC 68	MO	68	8.0	12.0	viceouty
SYNTH 68	PAO	68	9.0	18.5	
SEZ 68	POE	68	6.5	28.0	
PG 68	PAG	68	5.5	29.0	

Different oil types show different degrees of solubility:

PAG and POE:Lower solubility and higher mixture viscosityMineral oil and PAO:Higher solubility / lower mixture viscosity (esp. MO)

→ PAG / POE best choice for hydrocarbons with regard to wear protection PAG also have high VI (>200): additional benefits at high temperatures

RENISO refrigeration oils for Carbon Dioxide (CO₂, R744)

22 FUCHS Schmierstoffe GmbH - Product Management Industrial Oils, C. Puhl - June 2019

Refrigeration oils for CO₂ R744 / CO₂ cooling applications

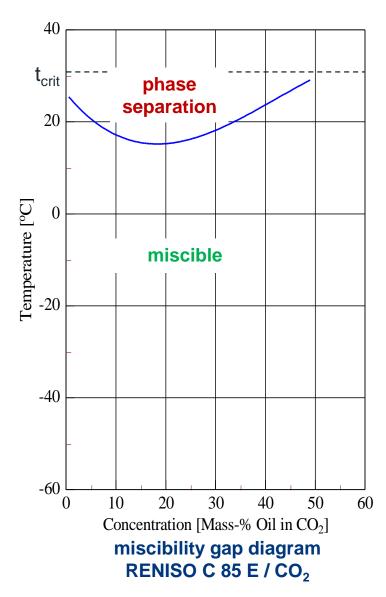
Stationary applications (cooling / refrigeration / heat pump):

- Supermarket cooling
 (cascade and transcritical systems)
- Ship cooling
- Heat pumps (industrial and domestic use)

Mobile applications (A/C): mainly projects

- Passenger cars (Daimler, VW)
- Coaches
- Trains

High miscibility with liquid CO2 DE PAG PAO Low miscibility with liquid CO2


- \rightarrow Polyalphaolefins (PAO) oils are not miscible with liquid CO₂
- → Polyalkylene glycol (PAG) show a limited miscibility: used in compact systems (car a/c, heat pumps etc.)
- → CO₂ refrigeration oils based on polyol esters (POE): are the most important group because of the very good miscibility with CO₂

Refrigeration oils for CO₂ RENISO C: CO₂ refrigeration oils based on POE

Excellent miscibility of RENISO C with CO₂

- High flowability at low temperatures
- No negative impact on the heat transfer in the evaporator
- Safe oil transport back to the compressor also in large tubing systems (supermarket)
- No oil separator necessary

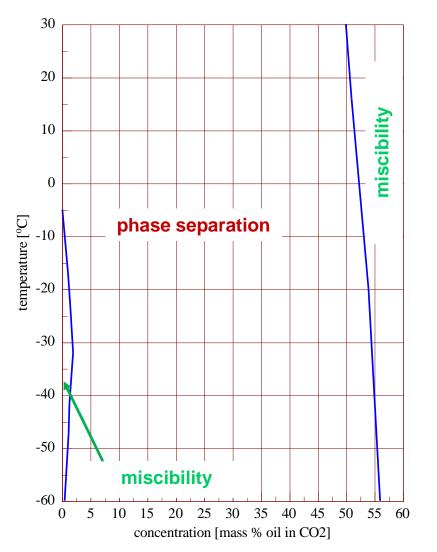
Refrigeration oils for CO₂

CO₂: Established technology in supermarkets in Central / Northern Europe

Installed in more than 1600 supermarkets

POE with special additive system for

Good CO₂ miscibility (oil return, heat transfer)


- High thermal stability (transcritical)
- Reliable lubricating properties (high pressure)

Refrigeration oils for CO₂ RENISO ACC 68: CO₂ refrigeration oil based on PAG (double end-capped)

 \geq

- Significant miscibility gap
 - Use in compact cooling systems
- Lower dilution under CO₂ atmosphere: higher lubricant film thickness
- → Very good practical experience in heat pump and air conditioning applications

27 FUCHS Schmierstoffe GmbH - Product Management Industrial Oils, C. Puhl - June 2019

RENISO C: Based on POE

Special anti-wear additivation guarantees excellent lubricating properties

- RENISO C 55 E: subcritical, e.g. supermarket cooling
- RENISO C 85 E: subcritical / transcritical, e.g. supermarket cooling
- RENISO C 170 E: mainly in subcrit. screw compressors e.g. ship cooling

RENISO C oils are used in nearly all relevant CO₂ compressors in all regions

RENISO ACC: Based on double end-capped PAG incl. special anti-wear (AW) additives

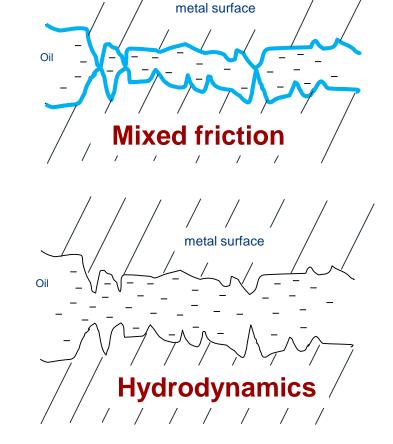

• RENISO ACC series:

For heat pumps and A/C applications (passenger car A/C e.g. Daimler, VW)

LUBRICANTS TECHNOLOGY.

> 15 years of experience

Why using anti-wear (AW) additives in CO₂ refrigeration oils ?


Anti-Wear (AW) additives are "activated" under mixed friction conditions :

→ Lubricating film tears off, no hydro-dynamics

→ No separating oil: contact of roughness peaks of the metal surfaces
Danger of wear !

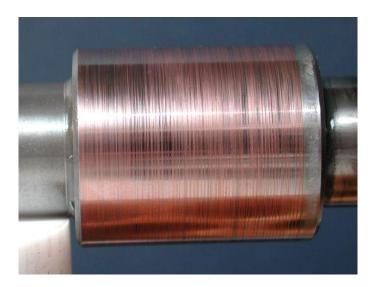
Mixed friction is more often present with CO_2 : High oil dilution with CO_2 High loads in the bearing High temperature in lubricating gap Low sliding speed (start-up)

> AW additives form protective reaction layer on the surface → Protection against wear

Refrigeration oils for CO₂ Additional reactant carbonic acid

Carbonic acid: carbon dioxide and water

 $CO_2 + H_2O \leftrightarrow H_2CO_3 \leftrightarrow H^+ + HCO_3^-$ carbonic <u>acid</u>


Possible consequences: Decomposition of the lubricant Attack of seals and metal surfaces→ corrosion, copper plating

Refrigeration oils for CO₂ Copper plating

Example: polyol ester oil (POE) with a water content of 300 ppm in CO₂ cascade system

Copper in polyol ester oil shows green colour (in some cases)

Copper plating main bearing of crank shaft

Summary / Outlook

- The number of applications using natural refrigerants is increasing
- New challenges for refrigeration oils very specific & related to the refrigerant
- Lubricant solution do already exist and work
- But there is still a lot more to learn and sometimes to improve

"Keep cool...it's all natural!"

Thank you for your attention!

eurammon is always available as a sparring partner for questions on refrigeration with natural refrigerants

Christian Puhl Product Management Industrial Oils FUCHS Schmierstoffe GmbH 68169 Mannheim (Germany) Christian.Puhl@FUCHS.com

