NH₃ - Plant Technology with Reduced and Optimized Refrigerant Operation

RORO[®] \rightarrow **R**educed and **O**ptimized **R**efrigerant **O**peration

Schaffhausen, June 27, 2019

refrigerants delivered by mother nature

Company and Lecturer

Michael Elsen

eurammon

- > General Sales Manager
- > Deputy Speaker of the advisory board at "Research Council for Refrigeration"

Kreutzträger Kältetechnik GmbH & Co.KG Theodor-Barth-Straße 21 28307 Bremen

2

Requirements for industrial refrigeration systems

>

>

International Regulations:

- > Adaptation of Montreal-Protocol (Kigali) => HFCs reduction
- > Paris Agreement => climate neutral up to 2050; <2K up to 2100</p>
- > HFC Regulation (F-Gas-Verordnung)
- > Federal Imission Protection Law (BImSchG)
- > Energy Efficiency (Energieeinspar-Verordnung)

- Investment
- **Operating Costs**
- > Availability

eurammon

Objective

- > Highest possible energy efficiency
- > Minimized refrigerant charge
- > Best availability

eurammon

- > Highest possible safety standard
- > Attractive investment costs

Ideas and Solutions

- > NH₃ Pump Circulation System
- > NH₃ Indirect Cooling System
- > NH₃ RORO[®] Plant Technology

* **RORO**[®] \rightarrow **R**educed and **O**ptimized **R**efrigerant **O**peration

eurammon

Applications of NH₃ - RORO[®] Plant Technology

- > NH₃ Production cooling
- > NH₃ Feezer

eurammon

- > NH₃ Medium Temperature Store
- > NH₃ Low Temperature Store
- > NH₃ KALINOR[®] Ice Bank
- > NH₃ Liquid Cooling

- > Liquid Separator
- > Liquid Receiver
- > Vessel Pump
- > Pref. Piston Compressor

- > High Pressure Float Valve
- > LP + MP Liquid Separator
- > MP Refrigerant Pump
- > MP 1 Pump Pressure Line
- > LP Vessel Pump

Reduced and Optimized Refrigerant Operation

Efficiencies of NH₃ – RORO[®] - Plant Technology

Facilities example: NH₃ – RORO[®] - Plant Technology

- > Valve station and pipe work outside the cold store
- > Hermetic stainless steel pipe work inside the cold store
- > Zone cooling by connecting of the evaporators pairwise
- > Motor expansion valve with feedback signal of each evaporator
- > Superheat regulation of each evaporator
- > Single defrosting of each evaporator on demand
- > Avoidance of oil contamination by hot gas defrosting
- Avoidance of dirt contamination by using filters consequently

NH₃ - Plant Technology with Reduced and Optimized Refrigerant Operation

eurammon

Facilities example: homogeneous cold store temperature

Facilities example: Superheat regulation

Applications

NH₃ – RORO[®] - Fluidized Bed System

GOOD TO KNOW

- > Approx. 80% reduction of NH₃-charge
- > No boiling retardation
- Minimum pressure loss in the wet return line
- > Optimized hot gas defrosting

eurammon

Advantages of the RORO[®] - Plant Technology

GOOD TO KNOW

- > Very low superheat at the evaporator of 2K possible, due to additional liquid separator
- > Entrained droplets in the suction line caused a saturation on evaporation temperature
- > No negative effect on discharge temperature due to minimal superheating
- > Loss of power of approx. 0,5 % related to the total refrigeration capacity caused by superheat of less 2K
- > Pressure loss in wet return line towards separator will be minimized efficiency advantage approx. 5 8%
- > Reduction of pipe diameter (1 nominal width) is of economical interest
- > At two stage plants the LP pump pressure line is not necessary
- > At LP application, especially at freezers a minimized boiling retardation is expected
- > Very low ammonia charge of less 1 kg/kW => "Federal Imission Protection Law" (BImSchG) can be avoided
- > Optimized heat exchanging will compensate superheat area and reduced heat transfer surface
- > Highest possible safety standard is guaranteed at the cold store and at the production area, due to the use of non corrosive materials and hermetic design without detachable connections and valves
- In case of accident maximum 5 kg NH₃ will leak. At a store size of 64,000 m³ => approx. 100 ppm (annoyance > 250 ppm / tolerability 500-1000 ppm)

eurammon

+

			Forschungsrat :
			Kältetechn
			Raiterecini
Projektinformationen			
Bearbeiter:	elsen	erstellt am:	18.10.2017 12:01:28
Programmversion:	2.0.7.7	erstellt im Modus:	Basis
Projektname:	Beispiel 1 RORO Basis	Name der Variante:	RORO Basis
Erstellt durch:			
Firma:		Postleitzahl:	-
Adresse:	-	Ort:	-
Anlageninformationen			
Name der Anlage:	System New		
Bereich:			
Bemerkung:		Branche:	
Configuration			
Kälteleistung [kW]:	2149,7	Kältemittel:	R717
Leistungsaufnahme Verdichter [kW]:	524,8	Verdichtertyp:	offener Kolbenverdichter
Leistung der Hilfsaggregate [kW]:	114,610	Überhitzungsregelung:	elektronisches EV
Konfiguration kalte Seite:	direkte Verdampfung luftbeaufschlagt	Konfiguration warme Seite:	Verdunstungsverf luessiger
Nutztemperatur [°C]:	3,0	Lastprofil:	LP6 Lebensmittellager ung
Verdampfungstemperatur [°C]:	-6,0	Verflüssigungstemperatur [°C]:	30,0
Überhitzung [K]:	5,0	Leistungsregelung:	variabel
	fest	-	variabel

Energy Efficiency Tool - Version 2.0

eurammon

VDMA - Standard Sheet 24247

- > Energy Efficiency η_{KC} of **Refrigeration capacity**
- > Energy Efficiency η_{WT} of Heat transfer
- > Energy Efficiency η_{FT} of **Fluid transport**
 - Energy Efficiency η_{Qo} additional **Refrigeration** capacity to compensate the energy input
- > Total Energy Efficiency
 - $\eta_{ges} = \eta_{KC} \times \eta_{WT} \times \eta_{FT} \times \eta_{Qo}$

eurammon

>

Information about the efficiency of the components

NH₃ - Plant Technology with Reduced and Optimized Refrigerant Operation

20

- > Single efficiencies
- > Total efficiency
- > Total result

Total Result:

- > Annual energy consumption = 1.339.375 kWh
- > Cost of electricity = 200.906,- €
- > Seasonal Energy Efficiency Ratio SEE(I)R = 3,26

Results TABELLE TEILERGEBNISSE **ERGEBNIS MERKEN** alle . Teilergebnisse $\Box \eta_{KC}$ 0.8 □ η_{wT} 0.6η_{FT} 0.4-∎η_{Q0} 0,2- $\Box \eta_{\text{des}}$ Y-Achse: Min: 0 ✓ zeige Linien Max: 1 4365478 kWh/a kWh/a Jahreskühllast: Jahreskondensationswärm 5373464 Jahreselektroenergiebedar 1339375 200906 €/a kWh/a Kosten Elektroenergie SEE(I)R: 3.26 0 m³/a Jahreswasserverbrauch: NH₃ - Plant Technology with

Reduced and Optimized Refrigerant Operation

eurammon

Measurement Report

eurammon

Sample-S Technolog Protocol (Date:	System: Food st gy: NH ₃ - R0 (monthly): Energy 2016	orage - Location Frankfurt a.M. DRO measurement System	Energy measurement refrigeration plant
	Refrigerant capacity in kWh	electrical current consumption in kWh	700000
Tag			600000 -
1	20005	5 80092	
2	23074	3 68965	500000 -
3	18485	7 66441	400000 -
4	22317	6 01325	
6	24100	7 67981	300000 +
7	59225	9 161249	200000
8	40766	9 114546	200000
9	39161	2 112228	100000 -
10	10850	0 35452	
11	19471	2 72036	
12	14952	1 62864	1 3 5 7 9 11
sum	324550	1 1010383	SEE(I)R = 3,21
Energy I	Efficiency Tool: 436547	8 1339375	SEE(I)R = 3,26

Summary

GOOD TO KNOW

- > Proven technology for 1- and 2-stage operation
- > Usable efficiently and reliably in medium temperature, low temperature and freezers
- > Built 11 plants in 6 years one more at this time in commissioning
- > Refrigerant content reduced by 2/3
- > Optimized heat transfer at the heat exchangers
- > Low-risk system technology
- > Easy to maintain
- > Highest energy efficiency (independently verified)
- > Highest energy efficiency even with two-stage systems

eurammon

Eurammon is always available as a sparring partner for questions on refrigeration with natural refrigerants.

Michael Elsen Kreutzträger Kältetechnik GmbH & Co.KG Theodor-Barth-Straße 21 28307 Bremen

Michael.Elsen@Kreutztraeger.de https://www.kreutztraeger-kaeltetechnik.de phone: +49 151 4226 5498

refrigerants delivered by mother nature