NH₃ DX – HOW SMALL IS TOO SMALL?

Stefan S. Jensen, Scantec Refrigeration Technologies Pty. Ltd.

Schaffhausen, 27-28 June 2019

Introduction

Topics to be covered in the presentation:

- Retrofit from HFC 404A to NH₃ dry expansion for small (5,250 m³) facility
- Subtropical climate (Mackay, Central/North Queensland, Australia)
- HFC plant energy consumption recorded over five years
- NH₃ dry expansion plant energy consumption recorded over 7-8 months (2018/19)
- Energy performance comparision between HFC 404A and NH₃ DX
- Economic comparison between HFC, TC CO₂ and NH₃ dry expansion
- Prospects for NH₃ DX with respect to HFC substitution
- Return on higher capital cost of NH₃ DX versus TC CO₂

Previous Installation

Freezer

Air Cooled R404A Plant, single stage, electric defrost

Previous Installation

Ceiling Cavity

Ante Room

eurammon

NH₃ DX – How Small is Too Small?

Climate in Mackay, North Queensland

NH₃ DX – How Small is Too Small?

Schedule of Rooms and Heat Loads

Design heat loads	LT	HT
Refrigerant temperature, °C \rightarrow	-32	-7
Freezer, -24°C	45.2	
Chiller, 0-2°C		17.6
Flour room, 16°C		11.0
Ante room, 6°C		20.2
Total, kW	45.2	48.8

New NH₃ DX System

New NH₃ DX System

eurammon

NH₃ DX – How Small is Too Small?

Energy Savings

Specific Energy Consumption (SEC) Comparison:

HFC, kWh/m ³ *a	206
NH ₃ , kWh/m ³ *a	88
Saving, %	57

euramm

NH₃ Readings:

Start date 3.10.2018; reading 5,107 kWh End date 18.1.2019; reading 141,303 kWh From 18.1.2019 to 9.5.2019

1260 kWh/day

1207 kWh/day

Energy Savings

1-10: Reindl & Jekel IRC, March 2010, Industrial Refrigeration Energy Efficiency Guidebook, University of Wisconsin, Madison. ASHRAE 2018, Guide for Sustainable Refrigerated Facilities and Refrigeration Systems

Energy optimized central dual stage LR with screws

Centralized Scantec low charge NH₃

As described

Economics

eurammon

Refrigeration Plant Concept	Capital Cost	
	[%]	
Centralized, low charge NH ₃ system	100	
TC CO ₂ system, warm glycol defrost & SCADA	71	
TC CO ₂ system, electric defrost & SCADA	62	
Replacement HFC, electric defrost, no SCADA	45	

Simple pay-back for differential investment ~four years •

Future Prospects for Centralized Low Charge NH₃

- Well positioned for conversion of refrigerated warehouses from HFC to NR's
- Prospects in the supermarket industry (significant psychological hurdles)
- Multiplexing of ScanPAC's with minimal energy performance penalty
- Integration of LOGAS defrost in single ScanPAC/evaporator configuration will keep NH₃ inventories low without the energy penalty of electric defrost
- HFC to NH₃ conversions potentially cash flow neutral from day one
- Water cooled condensers/dry coolers will reduce NH₃ inventories further

Discussion

- Replacement HFC not considered
- Energy use of TC CO₂ (el defrost) ~40% <u>higher p.a. than NH₃ DX</u>
- Energy use of TC CO₂ (el defrost) ~15-20% less p.a. than HFC
- Capital cost difference TC CO₂ (el defrost) vs. NH₃ DX returned in 4 years
- NH₃ DX eliminates direct emissions and minimizes indirect emissions
- NH₃ DX is in this FNQ situation (5,245 m³) very viable

MAKE NH₃ EVEN GREATER

eurammon is always available as a sparring partner for questions on refrigeration with natural refrigerants

Stefan S. Jensen ssjensen@scantec.com.au

