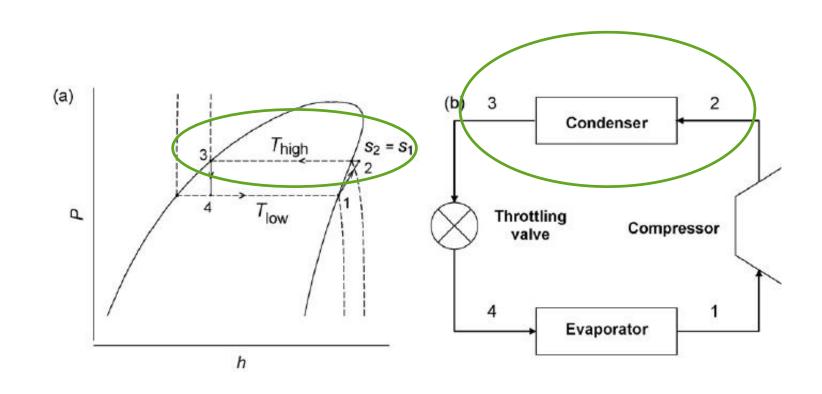

eurammon Symposium 2017

Energy Efficiency and Life Cycle Costs of a NH₃ Evaporative Condenser System

Georges Hoeterickx Evapco Europe BVBA

Schaffhausen, 22nd/23rd June, 2017

Different direct heat rejections methods



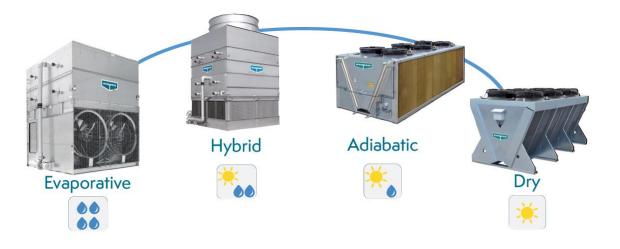
Challenges:

- Application: operating hours / size
- Investment cost vs efficiency
- Specifics at Jobsite
 - Refrigerant
 - Refrigerant charge?
 - Secondary loop?
 - Location for the "plant"
 - Technical level of operators

Refrigeration cycle

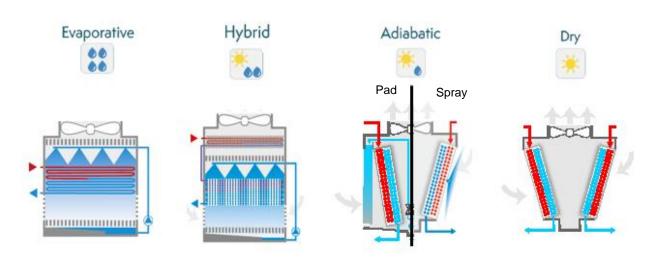
The selected refrigerant can improve the system efficiency a lot, but in small applications NH3 is still competing strongly with other refrigerants.

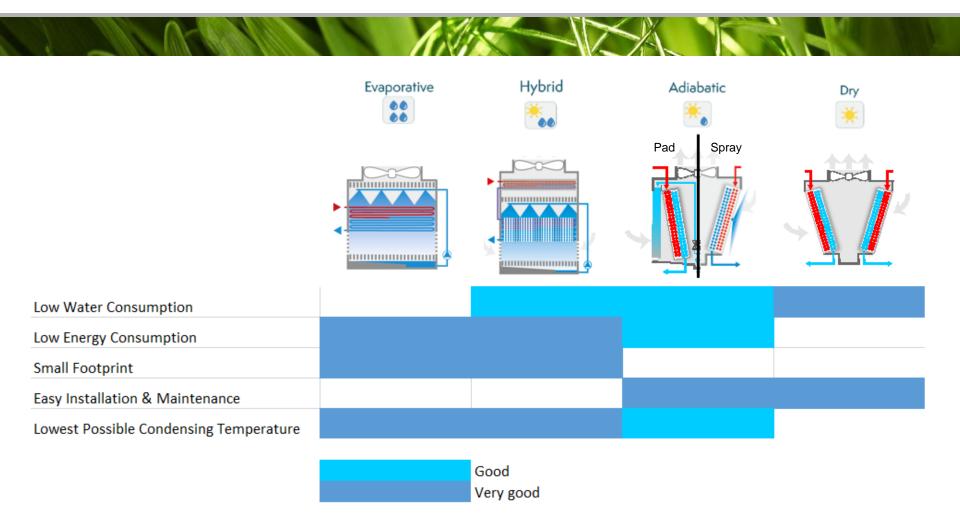
Criteria:


- hot gas temperature (eg. limitation via oil)
- min. and max. condensing temperature
- pressure drop and refrigerant charge

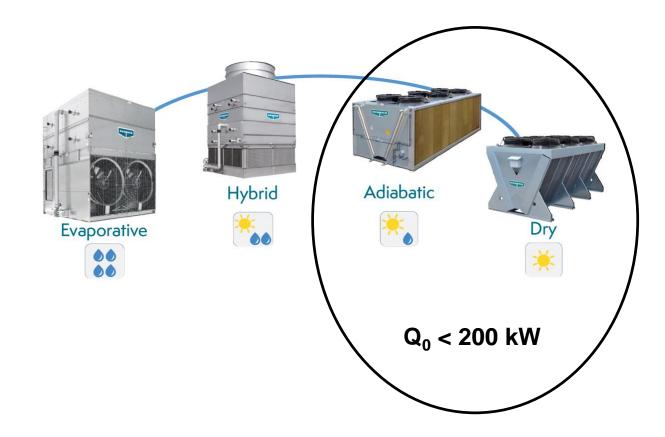
The type of heat rejection method will have impact on:

- Investment cost
- System efficiency
- Operating cost

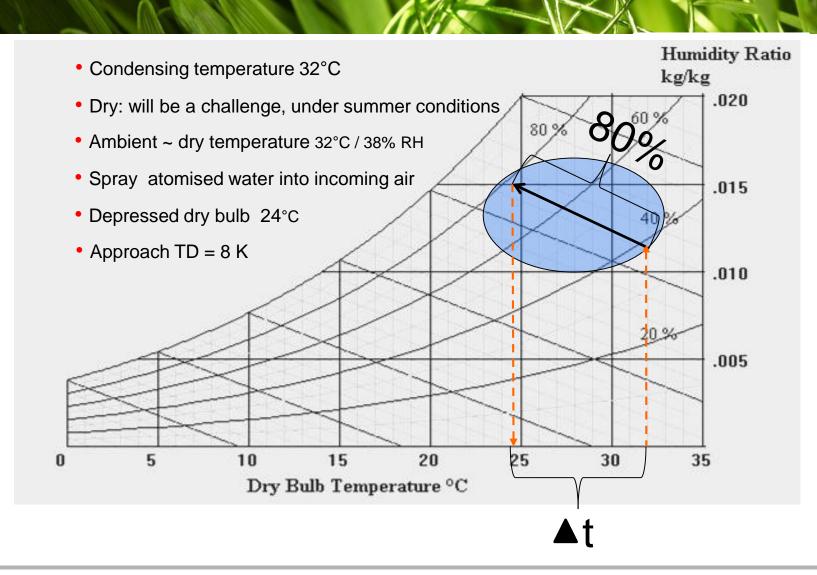


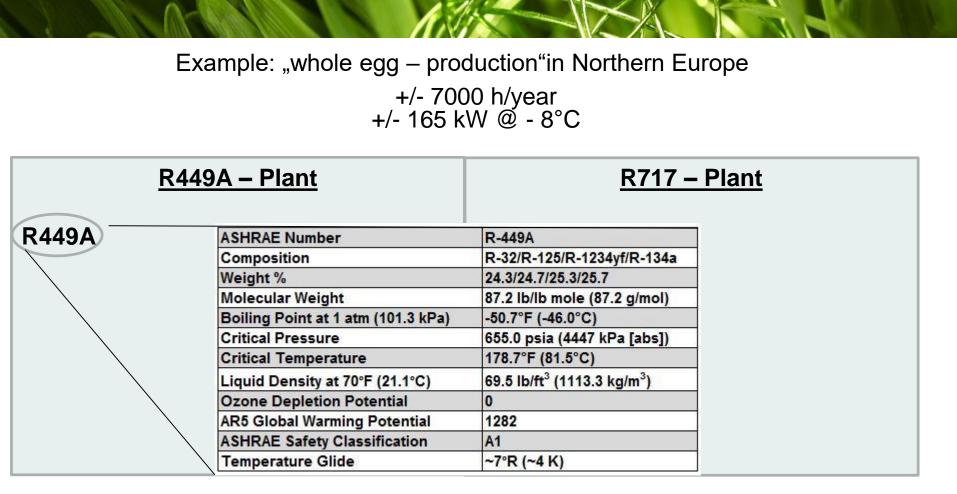

Which one is the best?

Schaffhausen, 22nd / 23rd June, 2017 Page 6



Features of different solutions

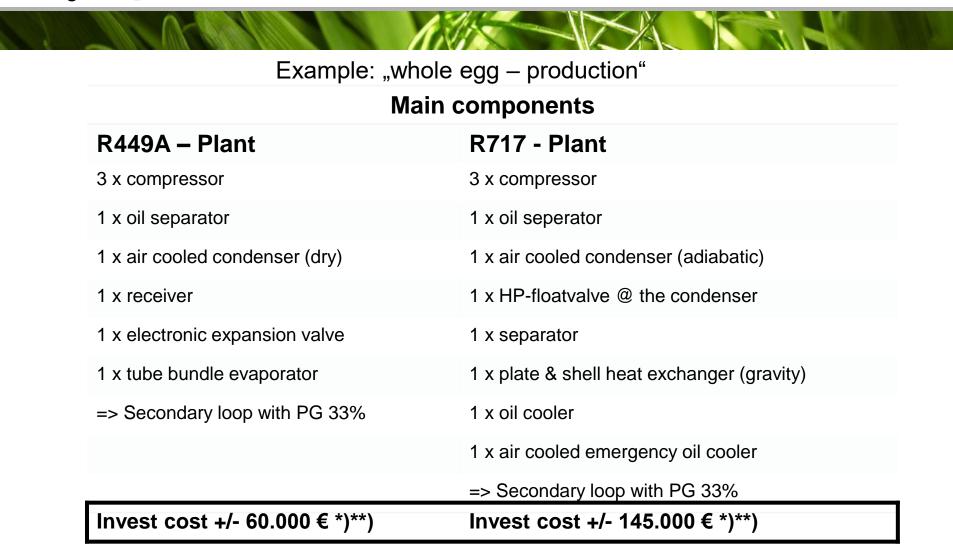

	Dry	Adiabatic Spray
+	no water	Basic spray system
		Lower t _c Lower P _{el}
-	Higher t _c Higher P _{el} Larger units	Water treatment Water on the fins



	Dry *	Adiabatic Spray	Adiabatic Pad
+	no water	Basic spray system	No water treatment Air pre-filter Sun screen
		37	Lower t _c .ower P _{el}
-	Higher t _c Higher P _{el} Larger units	Water treatment Water on the fins	Pads need to be replaced Invest

R449A: example Replacement refrigerant for R134A

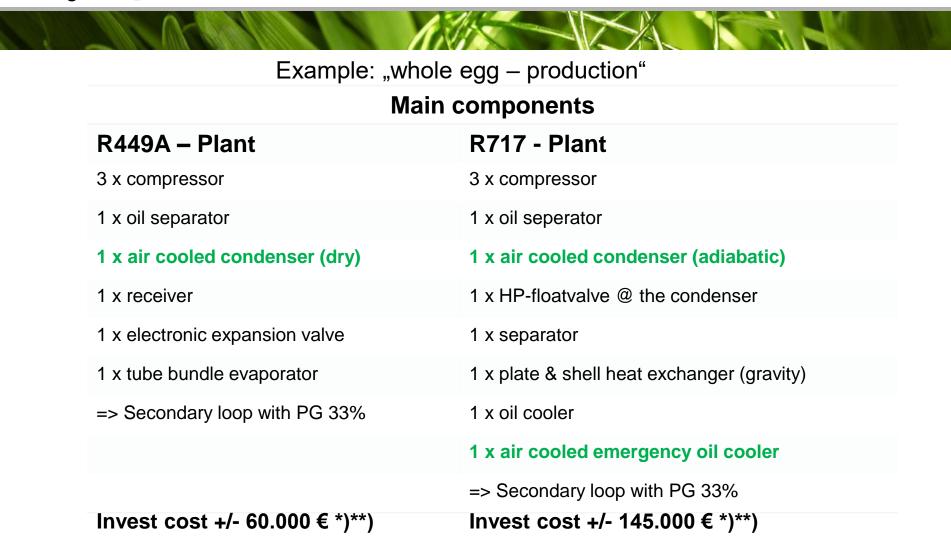
https://www.chemours.com/Refrigerants/en_US/products/Opteon/Stationary_Refrigeration/products/Opteon_XP40.html



Example: "whole egg – production" +/- 7000 h/year +/- 165 kW @ - 8°C

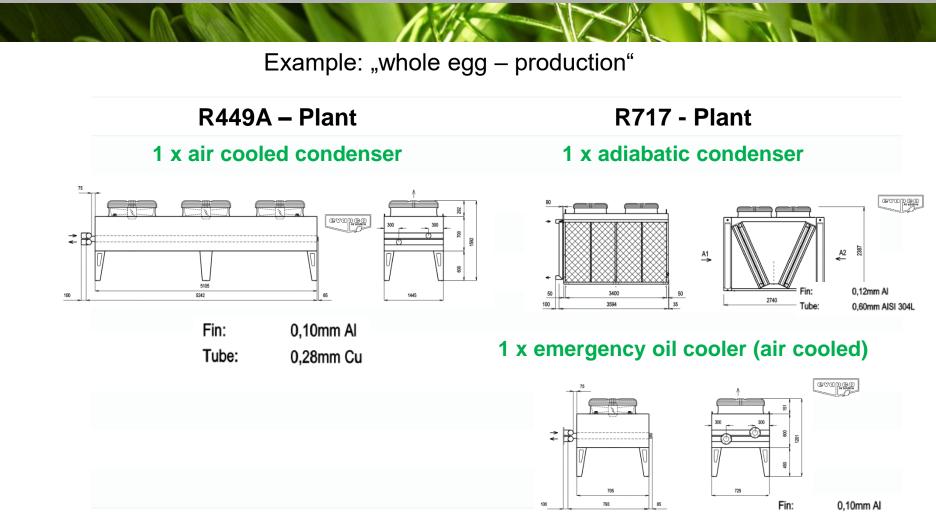
	R449A- Plant	R717 – Plant		
Capacity in total	164,4 kW	174 kW		
Screw compressor	3x semi-hermetic screw	3x open screw		
t _o	-8°C	-8°C		
t _c	+43 + 20°C	+32 + 20°C		
Shaft power (each compressor)	24,4 kW	14,97 kW		
Motor (each compressor)	37,3 kW	18,50 kW		
COP	2,25 4,41	3,88 5,4		
Condensing capacity	237,6 kW	198,6 kW		
+ Oil cooler	10,95 kW (internal)	20,4 kVŲ		

Used for pre-heating of the warm water and for heating in Winter



*) Both, without: secondary loop, control, external piping and insulation

**) Budget price via TEKO, www.teko-gmbh.com



*) Both, without: secondary loop, control, external piping and insulation

**) Budget price via TEKO, www.teko-gmbh.com

Tube: 0,28mm Cu

Example: "whole egg – production" : R449A - Plant

				Condenser					Compressor		
Month	DayHourAmbient Temp. (°C)Installed Installed (kW)Required Heat Rejection (kW)Power Consumption Actual (kW)		Actual	Pe each (kW)	No. of running Compressors	Power Consumpti on (kWh)					
1	1	1	-2.7	694	199	0.17	0.10	16,17	2,3	22	
1	1	2	-3.3	720	199	0.15	0.09	16,17	2,3	22	
1	1	3	-3.8	720	199	0.15	0.09	16,17	2,3	22	
1	1	4	-3.5	720	199	0.15	0.09	16,17	2,3	22	
1	1	5	-3.2	720	199	0.15	0.09	16,17	2,3	22	
12	31	20	-0.2	642	199	0.20	0.20	16,17	2,3	37	
12	31	21	-0.2	642	199	0.20	0.12	16,17	2,3	22	
12	31	22	-0.3	642	199	0.20	0.12	16,17	2,3	22	
12	31	23	-0.9	642	199	0.20	0.12	16,17	2,3	22	
12	31	24	-1.8	668	199	0.18	0.11	16,17	2,3	22	
			9.3			kWh	5755.53		kWh	298881	

Notes:

- Condenser unit oversized to allow operation at reduced fan speed to improve power consumption
- Chiller capacity:
 - Each 54,8 kW @ 43°C condensing
 - Each 71,4 kW @ 20°C condensing
 - 71,4 x 3 = 214,2 kW (165 kW required)
 - Compressor operates at reduced RPM to improve COP

Example: "whole egg – production" : R717 - Plant

Month	Day	Hour	Ambient temp.(°C)	Air inlet Condenser	Installed Condenser Capacity (kW)	Required Plant Capacity (kW)	Water Flow (Liter)	Power consumption Condenser (kW)	Hours in wet operation	Power Consumption (kWh)	Total Water Usage (Liter)	Power Consumption Chiller (kWh)
1	1	1	-2.7	-2.7	816	188	0	0.07	0	0.04	0	18
1	1	2	-3.3	-3.3	848	188	0	0.06	0	0.03	0	18
1	1	3	-3.8	-3.8	848	188	0	0.06	0	0.03	0	18
1	1	4	-3.5	-3.5	848	188	0	0.06	0	0.03	0	18
1	1	5	-3.2	-3.2	848	188	0	0.06	0	0.03	0	18
	•	• •				•	••					
12	31	20	-0.2	-0.2	753	188	0	0.08	0	0.08	0	30
12	31	21	-0.2	-0.2	753	188	0	0.08	0	0.05	0	18
12	31	22	-0.3	-0.3	753	188	0	0.08	0	0.05	0	18
12	31	23	-0.9	-0.9	753	188	0	0.08	0	0.05	0	18
12	31	24	-1.8	-1.8	785	188	0	0.08	0	0.05	0	18
			9,3						244.33	10547.90	309326	226668
										kWh		kWh

Notes:

- Condenser oversized to allow for operation at reduced speed to improve power consumption
- Chiller capacity:
 - Each 58 kW @ 32°C condensing
 - Each 62,3 kW @ 20°C condensing
 - 62,3 x 3 = 186,9 kW (165 kW required)
 - Compressor operates at reduced RPM to improve COP

Example: "whole egg – production"

Operating costs

R449A - Plant

R717 - Plant

	Consumption* Unit price		Unit price Operating costs		Unit price	Operating costs	
Condenser	5756 kWh	16 Ct/kWh	921€	10548 kWh	16 CT/kWh	1.688€	
Water Chiller	0m³ 298881 kWh	<u>3,5 EUR/m³</u> 16 Ct/kWh	0€ 47.821€	309m ³	3,5 EUR/m ³ 16 Ct/kWh	1.083 € 36.267 €	
Annual operating costs			48.742 €/year			39.037 €/year	

* theoretical calculated consumption, under consideration of the ambient temperatures

Example: "whole egg – production"

R449A - Plant

First costs +/- 60.000 € Operating costs: +/- 49.000 €

R717 - Plant

First costs +/- 145.000 € Operating cots +/- 39.000 €

Maintenance costs:

R449A compact chiller: 2 times/year Air cooled condenser: 1 time/year R717 compact chiller: 2 times/year Air cooled oil cooler: 1 time/year Adiabatic condenser: 1 time/year

*) theoretical calculated consumption, under consideration of the ambient temperature

Example: "whole egg – production"

R449A - Plant

First costs +/- 60.000 € Operating costs: +/- 49.000 €

R717 - Plant

First costs +/- 145.000 € Operating cots +/- 39.000 €

Maintenance costs

Additionial costs:

The pad needs to be replaced from time to time. \Rightarrow +/- 500 €/year (3x2500 = 7500/15)

*) theoretical calculated consumption, under consideration of the ambient temperature

Example: "whole egg – production"

R449A - Plant

First costs +/- 60.000 € Operating costs: +/- 49.000 €

R717 - Plant

First costs +/- 145.000 € Operating cots +/- 39.000 €

Maintenance costs

Additionial costs:

+/- 500 €/year

Simplefied payback period: < 9 years !!!

+ profit from using of the oil cooler capacity

*) theoretical calculated consumption, under consideration of the ambient temperature

Conclusion:

- The better energy and life cycle costs of plants with NH3 Evaporative condenser are for larger one's known and accepted.
- For smaller applications, NH3 needs to overcome the high cost against lower operating cost.

Contact: Evapco Europe BVBA

Georges Hoeterickx Industrieterrein Oost 4010 B-3700 Tongeren TEL.: +32 12 395 029 FAX.: +32 12 238 527 E-Mail: <u>g.hoeterickx@evapco.be</u>