

eurammon Symposium 2017

Commercial Refrigeration Systems with R290 and R1270 –

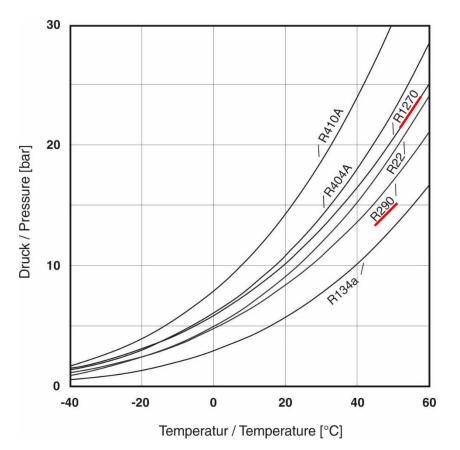
Criteria for the Selection and Layout of Components and Pipe Work

Hermann Renz, BITZER GmbH

Schaffhausen, 22nd/23rd June, 2017

Commercial Refrigeration Systems with R290 and R1270

Contents


- R290 and R1270 properties and their impact
- Resulting design and layout criteria
- Influence of hydrocarbons on compressor lubrication
- Required measures for reliable operation
- Summary

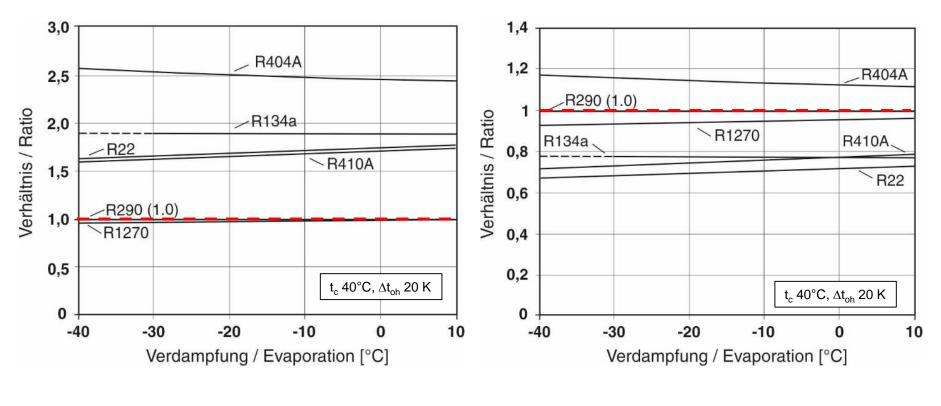
Presentation does <u>not include</u> measures for safety provisions

R290 and R1270 Properties and Their Impact (1)

- Moderate pressure levels, low pressure ratio (p/p_o) due to flat temperature/pressure characteristics
 - p/p_o far lower than with any HFC or HFC/HFO alternative
- Volumetric refrigerating capacity +/-20% vs. R22 and R404A/507A
- High evaporation enthalpy
 - @ -10/40°C approx. 1.7 times vs.
 R22 // 2.5 times vs. R404A/R507A

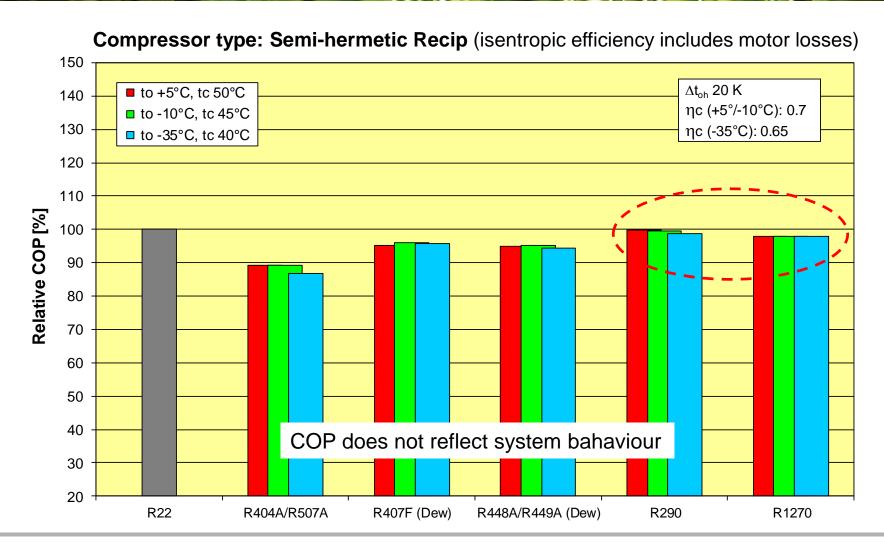
Volumetric Refrigerating Capacity / Suction Gas Volume Flow

Volumetric refrigerating capacity of different refrigerants compared to R290 ⇒ Identical suction volume flow Suction gas volume flow of different refrigerants compared to R290 ⇒ Identical refrigerating capacity



R290 and R1270 Properties and Their Impact (2)

- Low refrigerant mass flow
 - @ identical Qo \Rightarrow ≈ 55..60% vs. R22 // ≈ 40% vs. R404A/R507A
- Very low vapour and liquid densities
 - Vapour (suction): \approx 35..55% vs. R22 and HFCs
 - Liquid: $\approx 40..50\%$ vs. R22 and HFCs
 - Low pressure drop in heat exchangers (HX) and pipe work
- High superheat enthalpy in relation to volume change
 - Rising volumetric refr. capacity with increasing useful superheat
 - Increase of capacity and COP with liquid/suction line HX

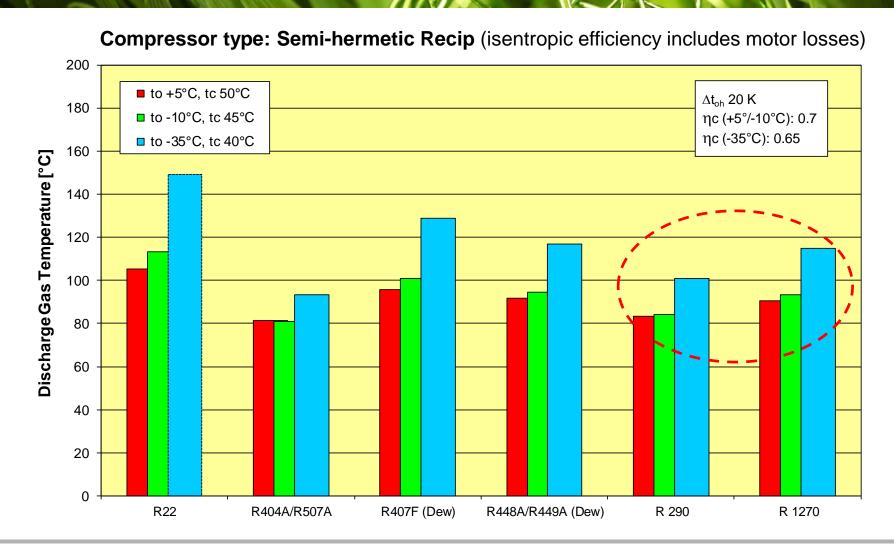

Refrigerant Mass Flow / Liquid Volume Flow

Mass flow of different refrigerants compared to R290 ⇒ Identical refrigerating capacity Liquid volume flow of different refrigerants compared to R290 ⇒ Identical refrigerating capacity

Relative Compressor COP – R22, HFCs vs. R290 and R1270

R290 and R1270 Properties and Their Impact (3)

- Low discharge gas and oil temperatures (low c_p/c_v)
 - Moderate thermal load even with high pressure ratio (LT single stage)
- High critical temperature (96.7 / 91.1°C)
 - Favorable compressor and system COP also at high condensing temperatures and lift conditions



R290 and R1270 Properties and Their Impact (4)

- Good heat transfer due to intensive boiling and excellent solubility and miscibility with oil
 - Single fluids ⇒ no temperature glide
 - Good oil transport, low viscosity also in superheat section of evaporators
- Material compatibility similar to R22 and HFCs
 - Elastomers/plastics ⇒ some stronger limitations with R1270 (see also "Forschungsrat Kältetechnik" Research Report FKT61_99)

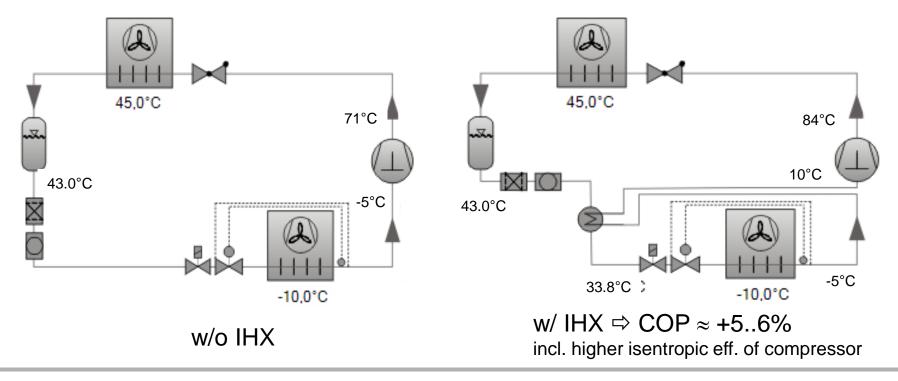
Comparison of Discharge Gas Temperatures with Single Stage Operation

Resulting Design and Layout Criteria (1)

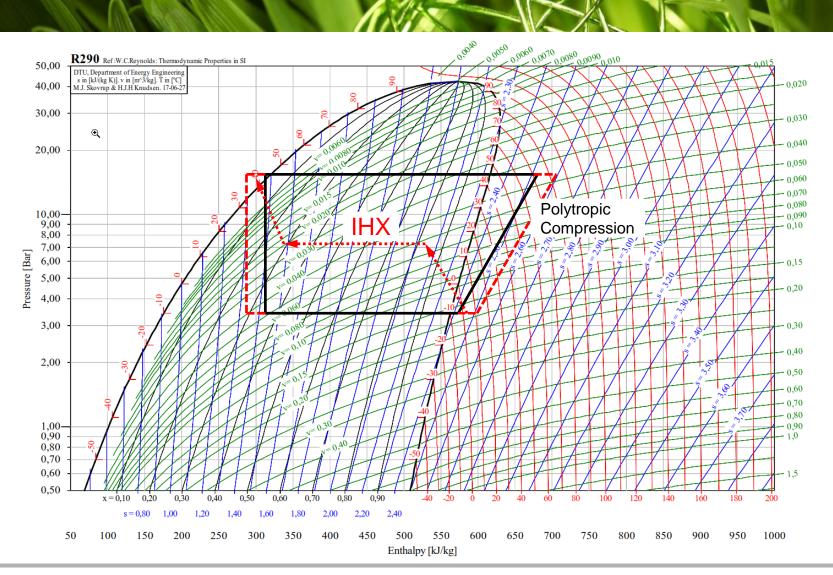
- Reduced cross sections in HX, suction and discharge lines vs. R22 / HFC
 - Due to far lower vapour density / pressure drop
- Identical dimensions of liquid line as with R22
 - Higher liquid volume flow but less pressure drop ⇒ lower density
- Potential for minimum refrigerant charge
 - mass 40..60% vs. R22 / HFCs

- Select HX and line components according to mass and volume flow
 - Evaporator: e.g. injection distribution, pipe length and pipe geometry
 - Danger of uneven distribution and liquid overfeed in part load
 - TXV / EXV ⇒ capacity* vs. R22 same nozzle (bulb charge adapted):
 - R290 \approx HT / MT: 0..+5% // LT: -2..+2.5%
 - R1270 ≈ +13..18%

Higher numbers with lower condensing temperatures (15 K < reference tc)

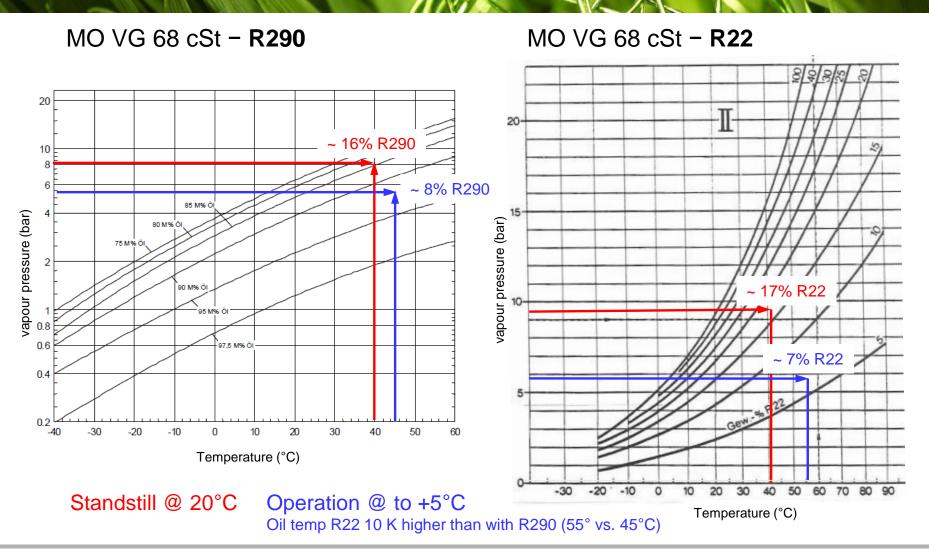

* Source: Danfoss / Honeywell calculation methodology

Resulting Design Criteria and Measures (3)


- Preferred use of liquid/suction line HX \Rightarrow target $\Delta t_{oh} \approx 20$ K (HT, MT)
 - Benefit in capacity, COP and reduced oil dilution ⇒ higher oil temp

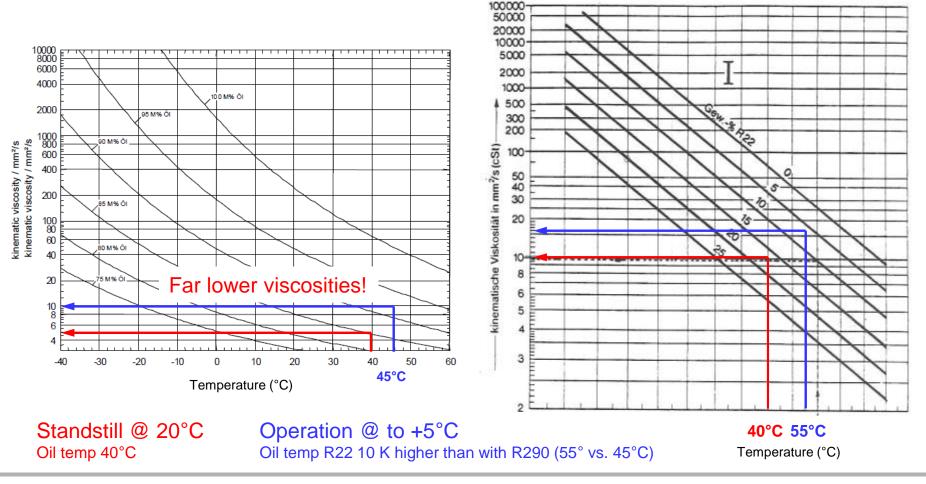
Examples of Cycle Configuration (R290)

R290 Cycle Diagram - Capacity and COP Increase by IHX


- HC's have exceptionally good solubility/miscibility behaviour in oil especially with lubricants of low polarity like MO
 - Strong oil dilution / reduced viscosity / solvent effect
 - Strong degassing and foaming with pressure fluctuation
- Operating temperatures (discharge gas, oil) remarkably low
 - Increased amount of dissolved HC in oil especially at small pressure ratios, high evaporating temperatures and low superheat

- Solubility (oil/refrigerant) usually measured in "mass %"
 - With MO no severe difference in mass % vs. R22 or HFC's w/ POE – however …
 - Low liquid density of HC's (40 45% vs. R22) leads to more than double volume of dissolved refrigerant in oil
 - Far stronger oil dilution than with R22 and HFC's

Pressure / Temperature / Solubility Relation Example MO Oil / R290 vs. R22



Solubility / Viscosity Relation Example MO Oil / R290 vs. R22

MO VG 68 cSt - R22

- Best suitable lubricant acc. to compressor manufacturer specification
 - Usually higher basic viscosity and/or lubricants with higher viscosity index (Vi) or high polarity (lower solubility)
- Minimum refrigerant charge
- Generously sized crankcase heater
- High suction pressure during standstill periods?
 - Pump down cycle may become necessary
- Possible insulation of compressors in case of outdoor installation

- Superheat in MT & HT should be 20 K or higher, LT > 10 K
 - Liquid/suction line heat exchanger ⇒ especially AC & Heat Pumps
- Measures against "wet operation" during start and operation
 - Avoid refrigerant migration to suction side during standstill
 - Maintain sufficiently high suction gas superheat

- The extended use of R290 and R1270 in commercial RAC systems can be seen as one of the promising future solutions
- High system efficiency and reliability can be reached with component and system design precisely matched to the specific refrigerant properties
- This as well includes to consider the necessary measures with regard to lubricant related issues

Example of Chiller / Heat Pump Unit

- Outdoor Units with a cooling capacity range up to 190 kW
 - Reversing cycle chiller / heat pump unit
 - 3-pipe water loop
- Refrigerant: R290/1270 blend

Source: Unichemie NL

Thank You for Your Attention!

Contact:

Hermann Renz Eschenbruennlestr. 15, D-71065 Sindelfingen Germany +49 7031 932 240 +49 7031 932 5240 hermann.renz@bitzer.de