CALCULATION, SIMULATION AND APPLICATION OF COMMERCIAL AND LIGHT INDUSTRIAL CO_2 HEAT PUMPS

eurammon Web-Seminar, July 06 2020

euramon refrigerants delivered by mother nature

CALCULATION, SIMULATION AND APPLICATION OF COMMERCIAL AND LIGHT INDUSTRIAL CO_2 HEAT PUMPS

Contents

- Motivation
- Introduction and Boundary Conditions
- Results of the work
- Summary and Conclusions

CALCULATION, SIMULATION AND APPLICATION OF COMMERCIAL AND LIGHT INDUSTRIAL CO2 HEAT PUMPS

Heating and Cooling with Natural Refrigerants – a Way to Decarbonization. The present work is based on an air to water heat pump with CO_2 as refrigerant. In the form of a short analytical study, an attempt is made to identify possible influences that could result from the use of a more efficient compressor in an otherwise unchanged system.

HEAT PUMP APPLICATIONS WITH CO₂ AS REFRIGERANT

Hot or tap water heat pumps with CO_2 as refrigerant are predestined for applications with low water inlet -, high water outlet temperatures and high hot water demand, e.g. for bath loving people in spas and hotels, or in industrial applications.

Influences on COP:

- Heat source (air, waste water, etc.)
- Heat source temperature range to decide for monovalent, bivalent design
- Evaporator design
- Control on refrigeration circuit and water side
- Water storage tank and stratification
- Gas cooler design
- Oil return
- Choice of lubricant
- Defrost operation

eurammon

CALCULATION, SIMULATION AND APPLICATION OF COMMERCIAL AND LIGHT INDUSTRIAL CO2 HEAT PUMPS

HEAT PUMP APPLICATIONS WITH CO₂ AS REFRIGERANT

HEAT PUMP APPLICATIONS WITH CO₂ AS REFRIGERANT

- Basic operating modes are charging, re-heating and tapping mode
- Process of water heating is transient
- This work is based on a reference temperature of 55 °C for the water outlet
- Considered water inlet temperatures are 10 °C (start heating), 25 °C and 40 °C (end heating, or re-heating)

CALCULATION, SIMULATION AND APPLICATION OF COMMERCIAL AND LIGHT INDUSTRIAL CO2 HEAT PUMPS

BOUNDARY CONDITIONS

COMPRESSORS WITH LSPM MOTOR

Compressors with LSPM motors offer a higher COP. Increased efficiency is based on:

- Higher motor efficiency
- Higher mass flow rates due to synchronous speed
- Higher mass flow rates due to higher suction gas density ⇒ lower superheat across motor

MAIN IFLUENCES ON COPHEATING

CALCULATION, SIMULATION AND APPLICATION OF COMMERCIAL AND LIGHT INDUSTRIAL CO2 HEAT PUMPS

9

PINCH POINT AND HEAT LOSS

eurammon

RESULTS: INTERNAL HEAT EXCHAENGER

RESULTS: CAPACITY MAPS

- Nominal capacity @ t_{amb} / to / p_{HP} / f / t _{water inlet} / t _{water outlet} = 7 °C / 2 °C / 85 bara / 70 Hz / 10 °C / 55 °C
- Minimum capacity @ t_{amb} / to / p_{HP} / f / $t_{water inlet}$ / $t_{water outlet}$ = 7 °C / 2 °C / 100 bara / 25 Hz / 40 °C / 55 °C

RESULTS: HIGH PRESSURE AND EFFICIENCY MAPS

RESULTS: HIGH PRESSURE AND EFFICIENCY MAPS

- ΔT_{pinch} @ 85 bara, 70 Hz, t_{water in} 10 °C: TE 3,0 K / TE+ 2,8 K
- ΔT_{pinch} @ 90 bara, 70 Hz, t_{water in} 10 °C: in both cases 3,0 K
- At this operating point, the influence of increased pressure for the heating capacity is low, but significant for efficiency. For the TE+ series, the disadvantage would be in the range of -5.5 percent.

eurammon

CALCULATION, SIMULATION AND APPLICATION OF COMMERCIAL AND LIGHT INDUSTRIAL CO2 HEAT PUMPS

RESULTS: COP AS FUNCTION OF DISCHAGRE PRESSURE, WATER INLET TEMPERATURE AND FREQUENCY

-tw 10..55 [°C] f;TE+50 [Hz]
-tw 25..55 [°C] f;TE+50 [Hz]
-tw 40..55 [°C] f;TE+50 [Hz]
-tw 10..55 [°C] f;TE+25 [Hz]
-tw 25..55 [°C] f;TE+25 [Hz]
-tw 40..55 [°C] f;TE+25 [Hz]

eurammon

CALCULATION, SIMULATION AND APPLICATION OF COMMERCIAL AND LIGHT INDUSTRIAL CO2 HEAT PUMPS

RESULTS: COP AS FUNCTION OF DISCHAGRE PRESSURE, WATER INLET TEMPERATURE AND FREQUENCY

- t water inlet 10 and 25 °C : Highest COP with min ΔTpinch and pHP
- t water inlet 40 °C : Highest COP with approx. 100 bar
- TE+: Highest increase in COP with 25 Hz and highest pressure ratio

CALCULATION, SIMULATION AND APPLICATION OF COMMERCIAL AND LIGHT INDUSTRIAL CO2 HEAT PUMPS

16

RESULTS: SHARE OF POWER CONSUMPTION

CALCULATION, SIMULATION AND APPLICATION OF COMMERCIAL AND LIGHT INDUSTRIAL CO2 HEAT PUMPS

RESULTS: SHARE OF POWER CONSUMPTION

- TE+: Share of power consumption in heat capacity is reduced
 - Share reduced with increasing pressure ratio
 - Most significant with 25 Hz operating frequency
 - Lowest change with 50 Hz
- Increased mass flow and potentially higher cooling capacity shows the basis for higher heating capacity of the unit with the TE+ compressor

eurammon

CALCULATION, SIMULATION AND APPLICATION OF COMMERCIAL AND LIGHT INDUSTRIAL CO2 HEAT PUMPS

SUMMARY & CONCLUSIONS – USING A MORE EFFICIENT COMPRESSOR WITH LSPM MOTOR IN AN OTHERWISE UNCHANGED SYSTEM

Within the scope of this work, a more efficient compressor with LSPM motor offers:

- Benefit in COP_h, especially with 25 Hz operating frequency of the compressor
- Increased heating capacity

However, it is important to note, that:

- The share of power consumption in the heat capacity decreases
- The level of discharge gas temperatures decreases as well
- The increase in heat output is achieved by an increase in mass flow and thus in cooling capacity
- The pinch point temperature difference is affected in a negative way with 10 and 25 °C water inlet temperature and discharge pressures < 90 bara

For the conditions considered:

- The trend of the optimum high pressures are the same
- A significant difference in superheat is generated by the IHX, especially at 40 °C water inlet temperature and 25 Hz operating frequency

eurammon

CALCULATION, SIMULATION AND APPLICATION OF COMMERCIAL AND LIGHT INDUSTRIAL CO2 HEAT PUMPS

THANK YOU FOR YOUR ATTENTION!

Oliver Javerschek BITZER Kühlmaschinenbau GmbH Application Engineering and Product Performance Peter Schaufler-Straße 3 <u>oliver.javerschek@bitzer.de</u>

euramon refrigerants delivered by mother nature